

Nitro Audit Public Report

PROJECT: Nitro Project Audit

December 2020

Prepared For:

Nitro Project Team | Nitro Project

info@nitro.finance

Prepared By:

jonathan@bramah.systems

Jonathan Haas | ​Bramah Systems, LLC.

Nitro Project Security Review

Table of Contents

Executive Summary 3
Scope of Engagement 3
Timeline 3
Engagement Goals 3
Contract Specification 3
Overall Assessment 5
Timeliness of Content 6

General Recommendations 7
Non-utilization of ABIEncoderV2 7
SPDX declaration lacks license 8
Events should be “emit” to differentiate between function calls 8
Snake case should be used for constants 9
Functions can be renamed to more accurately reflect action 9
Referenced endpoints should utilize HTTPS 9
SafeMath library is available but not utilized 10
Truncation from multiplication following division 10
Return value type declared but not utilized 11
Typographic errors in code comments 11

Specific Recommendations 13
Public API functions are only accessible by owner 13
Earlier swap routes are more likely to guarantee execution (non-atomic transactions) 13
Unreachable if statements 14
Minimum waiting period can be reached but contract may not be added 15

Toolset Warnings 16
Overview 16
Compilation Warnings 16
Test Coverage 16
Static Analysis Coverage 16

Directory Structure 18

2

Nitro Project Security Review

Nitro Project Protocol Review

Executive Summary

Scope of Engagement
Bramah Systems, LLC was engaged in December of 2020 to perform a comprehensive security
review of the Nitro Project smart contracts (specific contracts denoted within the appendix).
Our review was conducted over a period of five business days by both members of the Bramah

Systems, LLC. executive staff.

Bramah Systems completed the assessment using manual, static and dynamic analysis

techniques.

Timeline
Review Commencement: December 14th, 2020

Report Delivery: December 21st, 2020

Engagement Goals
The primary scope of the engagement was to evaluate and establish the overall security of the
Nitro Project, with a specific focus on trading actions. In specific, the engagement sought to

answer the following questions:

● Is it possible for an attacker to steal or freeze tokens?
● Does the Solidity code match the specification as provided?
● Is there a way to interfere with the contract mechanisms?
● Are the arithmetic calculations trustworthy?

Contract Specification
Detailed specification was provided by the Nitro team upon the structure of the Nitro contract
layout, flow control, and various aspects of the protocol.

In particular, the contracts surmise five primary functions:

3

Nitro Project Security Review

1. Swapping
a. Swapping aims to allow for two tokens to be swapped between holders,

functionally similar to a bulletin board or ECN.

2. Price Verification
a. Price verification aims to validate the authenticity of the quote that is provided.

Price verification is paid for in the quote instrument as a function of volume, in
which the caller must pay a fixed rate of the instrument in question as part of
this verification. This resultantly mines N2, which is paid out to the various
parties that are specified including the price provider. This allows for exchanges
and market markers to benefit from on-chain activity, incentivizing participation

in the protocol.

3. Farming
a. The farming function converts deposited tokens within ​_quoteInstrument​ into

their equivalent N2xyz token based on the volume in that instrument. For
example, USDT as the ​_quoteInstrument​ results in the ERC20 of ​N2USDT
being generated. Chainlink as the ​_quoteInstrument​ results in ​N2LNK​ being
generated, and so on. As farming occurs with each verification, network
participants are incentivized to participate.

4. Token Delivery / Factory Functionality
a. Token delivery aims to allow for users to redeem and accept delivery of the

underlying asset of their ​N2ERC20​, differing from redemption (as one need not
accept delivery to redeem, as is described below).

5. Redemption
a. Redemption aims to allow users to redeem their farming share for the

underlying asset without having to accept delivery. This results in a significantly
cheaper redemption process, as delivery needn’t be accepted (allowing the

individual to continue to transact, lowering total gas expenditures).

4

Nitro Project Security Review

Overall Assessment
Bramah Systems was engaged to evaluate and identify any potential security concerns within
the codebase of the Nitro Project. During the course of our engagement, Bramah Systems
found relatively few instances wherein the team deviated materially from established best
practices and procedures of secure software development within DLT, as our report details.

These aside, the team otherwise used thoroughly reviewed and vetted components and
provided details as to the token structure, economics, and intent, which helped Bramah
highlight any potential concerns with their approach. In particular, Nitro’s extensive test and
function documentation made for very clear delineation of potential concerns versus intended
behaviour. While minor deviations from best practices did occur, this extensive documentation
made it very straightforward to debug potential areas of concern, including potential system

invariants.

In addition, we felt Nitro gave extensive documentation as to their mitigations or responses to
our findings. We applaud such dedication to their safety and successful operation of their

protocol.

5

Nitro Project Security Review

Disclaimer
As of the date of publication, the information provided in this report reflects the presently held,
commercially reasonable understanding of Bramah Systems, LLC.’s knowledge of security
patterns as they relate to the Nitro Project Protocol, with the understanding that distributed
ledger technologies (“DLT”) remain under frequent and continual development, and resultantly
carry with them unknown technical risks and flaws. The scope of the review provided herein is
limited solely to items denoted within “Scope of Engagement” and contained within “Directory
Structure”. The report does NOT cover, review, or opine upon security considerations unique to
the Solidity compiler, tools used in the development of the protocol, or distributed ledger
technologies themselves, or to any other matters not specifically covered in this report.
The contents of this report must NOT be construed as investment advice or advice of any other
kind. This report does NOT have any bearing upon the potential economics of the Nitro Project
protocol or any other relevant product, service or asset of Nitro Project or otherwise. This
report is not and should not be relied upon by Nitro Project or any reader of this report as any
form of financial, tax, legal, regulatory, or other advice.
To the full extent permissible by applicable law, Bramah Systems, LLC. disclaims all
warranties, express or implied. The information in this report is provided “as is” without
warranty, representation, or guarantee of any kind, including the accuracy of the information
provided. Bramah Systems, LLC. makes no warranties, representations, or guarantees about
the Nitro Project Protocol. Use of this report and/or any of the information provided herein is at
the users sole risk, and Bramah Systems, LLC. hereby disclaims, and each user of this report
hereby waives, releases, and holds Bramah Systems, LLC. harmless from, any and all liability,
damage, expense, or harm (actual, threatened, or claimed) from such use.

Timeliness of Content
All content within this report is presented only as of the date published or indicated, to the
commercially reasonable knowledge of Bramah Systems, LLC. as of such date, and may be
superseded by subsequent events or for other reasons. The content contained within this
report is subject to change without notice. Bramah Systems, LLC. does not guarantee or
warrant the accuracy or timeliness of any of the content contained within this report, whether
accessed through digital means or otherwise.
Bramah Systems, LLC. is not responsible for setting individual browser cache settings nor can
it ensure any parties beyond those individuals directly listed within this report are receiving the
most recent content as reasonably understood by Bramah Systems, LLC. as of the date this
report is provided to such individuals.

6

Nitro Project Security Review

General Recommendations
Best Practices & Solidity Development Guidelines

Non-utilization of ABIEncoderV2

Although still marked ​experimental​, the ABIEncoderV2 pragma (per ​Solidity patch notes​ and

an Ethereum Foundation blog post​) is no longer considered to be experimental in nature and

should be considered for mainline usage.

As the protocol heavily would benefit from the usage of this data structure (explicitly denoting

the experimental nature and mitigations which we made in order to avoid its usage), we

suggest reconsideration of usage of ABIEncoderV2, for both gas optimization and generalized

readability of code.

Resolution​: While the team has made a multitude of structural changes to the contract over
the course of our engagement, changes to ABIEncoderV2 and the relevant gas costs that come
along with this process were deemed to be overall a negative impact to the protocol’s

structure at this time.

The Nitro team has provided the following: “Nitro was originally written to entirely avoid use
of ABIEncoderV2, for several reasons, first there had been previous security flaws introduced
by the encoder, and second Nitro is heavily optimized to reduce or defer gas usage whenever
possible. The ABIEncoderV2 had a worse gas usage profile in our testing. That being said we
did end up using this encoder in the final contracts, specifically to enable multi-hop and
multi-source ECN routing. Without the encoder the logic proved to be too difficult to follow,

and so in the interest of code legibility it was employed.

That being said, there are many instances in the contract that were [not] upgraded to use
structures externally, and still rely on slightly more cumbersome matching length lists of
items. We have opted not to rewrite these functions post-audit, as the risk of introducing bugs
or further complicating the launch of the product doesn't make sense.”

Bramah concurs with this assessment.

7

https://github.com/ethereum/solidity/releases/tag/v0.6.0
https://blog.ethereum.org/2019/12/03/ef-supported-teams-research-and-development-update-2019-pt-2/

Nitro Project Security Review

SPDX declaration lacks license

If this code is to be licensed in a way that does limit its general distribution following

publication to the blockchain, it should be declared as such within the SPDX declaration

section of each file.

Resolution​: The Nitro team has provided the following “Nitro's source code is available for
perusal, primarily to alleviate security concerns, and make it easier for programmers and
integrators to understand the inner workings of the protocol. It is Open, However it is not an
open source project under a copyleft license. If you wish to fork Nitro for your own purposes,
please contact us for licensing arrangements. The SPDX identifier does not explicitly include a
reference to commercial licenses, as that runs contrary to the intent and scope of the system.
We address this by using the LicenseRef- identifier which points to our non commercial all
rights reserved License.md. Insofar as we can tell this is best practices with respect to

commercial software.”

Bramah concurs with this assessment.

Events should be “​emit​” to differentiate between function calls

Events should be “emitted” to stand out with regular function calls, as per ​Solidity release

notes​:

General: Support and recommend using ​emit EventName();​ to call events explicitly.

In order to make events stand out with regards to regular function calls, ​emit EventName()​ as
opposed to just ​EventName()​ should now be used to "call" events.

In particular, events that perform certain global sensitive actions (such as disabling swapping)

should emit an event.

Occurrences:

NitroNexus.sol, Line 42

Resolution​: The Nitro team has provided “The NitroNexus contract was missing "emit" on the

8

https://github.com/ethereum/solidity/releases?after=v0.4.23
https://github.com/ethereum/solidity/releases?after=v0.4.23

Nitro Project Security Review

contract registered and unregistered events. This has been remedied.

Further, an additional event was added when global swapping is disabled which is a reserved
function for us (and ultimately the governance contracts) that prevents any swapping from

[occurring] as a security precaution.”

Bramah confirms events where applicable have been ​emit​.

Snake case should be used for constants

Where present, constants should be in snake case as per Solidity’s style guide, which borrows

structural elements from ​PEP8​.

Occurrences:

NitroSwap.sol, Line 30

Resolution​: The Nitro team has provided the following: “Nitro uses all caps to denote
constants. Although this differs from [established] solidity guidelines, it was an early decision
that we are not going to change at this point. However, instances where capitalization was not
employed properly for constants has been fixed.”

Bramah has confirmed these fixes.

Functions can be renamed to more accurately reflect action

Function get_token_address should be renamed to generate_token_address to more accurately

match action being performed. While a token address is returned, the token address may not

exist previously, and is generated at the time of invoking the function.

Resolution​: The Nitro team provides the following: “This is a matter of style. The example
get_token_address versus generate_token_address. Generate to me sounds like an action that
creates something, but get_token_address is a read-only view, that simply derives the token
address from the source token. Perhaps a better name would be derive_token_address(), but at

this point this won't be fixed.”

Bramah understands this decision and agrees that this is a style preference.

Referenced endpoints should utilize ​HTTPS

9

https://www.python.org/dev/peps/pep-0008/

Nitro Project Security Review

Swap testing logic presently reaches out to a multitude of HTTP endpoints. As HTTP endpoint

data can be intercepted and modified on certain networks, we suggest ensuring that all

endpoints associated with the protocol’s native operation utilize SSL/TLS.

Resolution​: While a loss of privacy is possible through usage of HTTP, the man-in-the-middle

concern is mitigated through the usage of signed web requests within the frontend.

The Nitro team notes: “The endpoints used in the nitro contract testing are not used directly by
any of this code, they are just examples. As examples it would be best if they referenced https
(SSL) channels, but there is no tangible [effect] one way or the other from a security

perspective.

Further, although the backend endpoints do utilize https, it is primarily to preserve user privacy
and has little to do with a man-in-the-middle attack. All pricing and execution data in Nitro is
signed and verified, an MITM attack that changes any relevant structure would fail the
secondary verification checks. This is an intended feature because the source of a quote may

not be the endpoint that the user connects to, it could be relayed or otherwise encapsulated.”

Bramah concurs with this assessment.

SafeMath library is available but not utilized

The SafeMath library is used to avoid cases of integer overflow among various arithmetic

functions. While the SafeMath library is included within the contract imports and the ​using

keyword is utilized (attaching library functions from the SafeMath library to the ​uint256​ type),

the functions (​add​, ​sub​, ​mul​, ​div​, ​mod​) should be utilized.

Resolution​: The Nitro team provides the following: “Originally Nitro was using entirely uint256

integers. When this was changed the intent was to manually verify for underflow and overflow

using the constraint solver, thereby making the runtime (gas costing) checks [unnecessary].
This audit confirmed that approach was not sufficient, and as a result all math-using functions

have been changed to utilize Safemath, intermediate values, and range checking.”

Bramah concurs with this assessment.

Truncation from multiplication following division

There is a loss of precision resulting from multiplication following division in a number of

10

Nitro Project Security Review

places (as listed below).

Occurrences:

NitroSwap.sol, Line 372

NitroFeed.sol, Line 411

NitroFeedClientMock.sol, Line 55

Resolution​: The Nitro team provides the following: “This occurs as part of the fee calculation,
and the proportional calculations. The order has been switched to multiply first and divide last,
that fixes the potential loss of precision. Both functions were also switched to use SafeMath
correctly.”

Bramah concurs with this assessment.

Return value type declared but not utilized

Multiple functions within the protocol define a return type but do not return any value. This

may result in assumptions made based on the default return type of the value.

Occurrences:

NitroFeedRegistry.sol, Lines 21-27

NitroFeedRegistry.sol, Lines 18-40

NitroFeedRegistry.sol, Lines 42-48

NitroFeed.sol, Lines 122-131

Resolution​: The Nitro team provided the following: “There were instances of functions that
had a return declared, but did not explicitly return. This has been resolved.”

Bramah concurs with this assessment.

Typographic errors in code comments

NitroFeed.sol specifies the following:

// Farming shares can be delivered to all parties as ERC20 tokens instantiates by proxy

// Delivery takes arrays of shares, so that a market maker can efficiently receive tokens

// across their mm activities.

11

Nitro Project Security Review

// Anyone can initiate delivery of a share, it will always go to the originators of that

share.

This comment should read instantiated by proxy, as the proxy entity instantiating the ERC20
tokens.

Resolution​: Typographic errors found within code comments have been addressed

appropriately.

Strings must be UTF-8 encoded
While strings are preferred to bytes32 (as strings do not have a practical size limit for the
scope of this engagement), strings in Solidity must be UTF-8 encoded. This will limit domain
characters which do not fall within this encoding (which while unlikely, are still possible). Feed
registries should be explicitly aware of this limitation to avoid potential misconfiguration.

Resolution​: The Nitro team provided the following: “Some URIs could be encoded incorrectly.

This is addressed in two ways, [first] the backend filters URIs that are published but incorrectly

formatted, so they will never propagate to an official Nitro client.

Second, the client side verification code tries to connect to URIs to do actually validate the feed
and reconcile it with the published address. So in practice this is of limited concern. Changing
to bytes32 allows anything to be used as a URI, but practically it also has to be validated to
the same standards any http/https endpoint would be by the client or intermediate code.”

Bramah concurs with this assessment and feels these mitigations adequately address the

concern.

12

Nitro Project Security Review

Specific Recommendations
Unique to the Nitro Project Protocol

Public API functions are only accessible by owner
Despite being documented as public API functionality, these public functions can only be
called by the designated Owner address.

Resolution​: The Nitro team provided the following: “This is largely a documentation change,

public or external functions that are owner only should be more explicit.”

Bramah concurs with this assessment.

Earlier swap routes are more likely to guarantee execution
(non-atomic transactions)
The protocol takes advantage of numerous structured loop statements to iterate through
existing instruments. As unbounded loops can have a theoretically infinite number of iterations
(limited only by the length of the instruments array), later instruments in the loop are not
necessarily guaranteed to execute (due to constraints involving gas).

While this can be limited by placing an upper bound on the number of instruments, we
suggest evaluating potential measures by which each instrument is validated individually
wherever possible, to prevent potential instances in which later participants are not

guaranteed execution.

Since the transactions (liquidity sourcing, trading fee distribution, etc.) aren’t atomic, it is
presently unclear what the intended behavior is if one or more steps can’t be completed (e.g.,

due to shortage of gas).

Resolution​: The Nitro team provided the following: “This is a limitation in Ethereum itself, in
that large or complicated swap routes may hit gas limits and fail to execute. Nitro is primarily
designed to guarantee execution for Swap routes up to two hops. However, even that can be
thwarted by exceptionally gas hungry token contracts. Even in a situation without iteration it is
possible to hit these limits due to deployed code outside of the control of this project.

So, unfortunately we can only provide the facilities to enable multi-route or source swaps, but

13

Nitro Project Security Review

cannot guarantee they will execute. Best practice is to do a pre-execution check of every part

of the swap path, as well as a gas estimate on the actual execution.”

Bramah agrees with the sentiment expressed, and also notes that the structural limitations of
Solidity are often a directly limiting factor on design choices.

Unreachable if statements
The function _calculate_proportional_share within NitroFeed.sol depends upon a calculation
performed that is unreachable as it relies upon a value (_truncate_decimals) that is never

reached (e.g. the value never exceeds zero).

Resolution​: The Nitro team provided the following:

“This is a bug in the _calculate_proportional_share function. It should truncate decimals when

the decimalization of the instrument is greater than Nitros internal decimalization.

In the totalSupply function this is not an unreachable if statement. Most of the time the halving
limit is not reached and this is executed, it covers partial tiers. So when the totalsupply of N2
falls between tiers this statement correctly calculates the difference. Similarly when the
halving limit reaches 24 this is not executed (there is no partial tier as we have reached the
hard limit).

While investigating this I noticed a loss of precision versus the elisp model for the totalSupply.
This is the result of using floating point representations for the elisp based calculations, this

14

Nitro Project Security Review

results in a cumulative rounding error that isn't present (or rather is expressed differently in the
Solidity execution). This loss of precision is less than 100 N2 units at the full halving, which
seems reasonable and should not affect any aspect of the system so long as it is internally

consistent.”

Bramah has validated each of these statements independently and has confirmed each to be
true. While dynamic analysis of the function was performed, our error in reference to
totalSupply was a result of manual intervention.

Minimum waiting period can be reached but contract may not be
added
The minimum waiting period must be exceeded, not simply reached when adding a contract, as
current validation (​>​) is not inclusive of the minimum waiting period (​>=​).

Occurrences:

NitroNexus.sol, Line 40

Resolution​: Nitro provided the following details: "Waiting period [now] accurately reflects the
minimum instead of one less than the minimum.” Bramah has validated this fix and believes it
to be satisfactory.

15

Nitro Project Security Review

Toolset Warnings
Unique to the Nitro Project

Overview
In addition to our manual review, our process involves utilizing static analysis and formal
methods in order to perform additional verification of the presence of security vulnerabilities
(or lack thereof). An additional part of this review phase consists of reviewing any automated
unit testing frameworks that exist.

The following sections detail warnings generated by the automated tools and confirmation of
false positives where applicable.

Compilation Warnings
No compilation errors are generated by the contract as of commit hash
0911240566b09ad04b64829c882479b890f81c5c​.

Test Coverage
The contract repository possesses substantial unit test coverage throughout. This testing
traditionally provides a variety of unit tests which encompass the various operational stages of
the contract, largely from the usage of a verbose test suite. This test suite includes a number of
invariants throughout the test suite,

Static Analysis Coverage
The contract repository underwent heavy scrutiny with multiple static analysis agents,
including:

● Securify
● MAIAN
● Mythril
● Oyente
● Slither

In each case, the team had either mitigated relevant concerns raised by each of these tools or

16

https://github.com/eth-sri/securify
https://github.com/MAIAN-tool/MAIAN
https://github.com/ConsenSys/mythril
https://github.com/melonproject/oyente
https://github.com/crytic/slither

Nitro Project Security Review

provided adequate justification for the risk (such as adhering to the ERC-20 token standard).

Non-initialized return value

● File: contracts/NitroFeedRegistry.sol
○ Lines: 56-64

● File: contracts/NitroFeedRegistry.sol
○ Lines: 21-27

● File: contracts/NitroTokenRegistry.sol
○ Lines: 18-40

● File: contracts/NitroTokenRegistry.sol
○ Lines: 42-48

● File: contracts/NitroFeed.sol
○ Lines: 122-131

● File: contracts/mock/N2TokenFactoryMock.sol
○ Lines: 12-20

Local variable usage for gas efficiency within a loop:

● File: contracts/NitroSwap.sol
○ Lines: 197-212

● File: contracts/NitroTokenRegistry.sol
○ Lines: 35-39

● File: contracts/NitroTokenRegistry.sol
○ Lines: 29-33

● File: contracts/NitroFeed.sol
○ Lines: 281-300

● File: contracts/NitroFeed.sol
○ Lines: 315-324

● File: contracts/NitroFeed.sol
○ Lines: 128-130

● File: contracts/NitroFeed.sol
○ Lines: 102-104

● File: contracts/NitroFeed.sol
○ Lines: 232-265

● File: contracts/NitroNexus.sol

○ Lines: 78-80

17

Nitro Project Security Review

Directory Structure
At time of review, the directory structure of the Nitro Project smart contracts repository
appeared as it does below. Our review, at request of Nitro Project, covers the Solidity code
(*.sol) as of commit hash ​0911240566b09ad04b64829c882479b890f81c5c​.

├── N2TokenFactory.sol

├── NitroFeed.sol

├── NitroFeedRegistry.sol

├── NitroNexus.sol

├── NitroSwap.sol

├── NitroTokenRegistry.sol

├── interfaces

│ ├── INitro.sol

│ ├── INitroFeed.sol

│ ├── INitroFeedRegistry.sol

│ ├── INitroNexus.sol

│ ├── INitroRegistry.sol

│ └── INitroTokenRegistry.sol

├── mock

│ ├── N2TokenFactoryMock.sol

│ ├── NitroFeedClientMock.sol

│ ├── NitroMock.sol

│ ├── NitroNexusMock.sol

│ ├── NitroSwapMock.sol

│ ├── SimpleTokenMock.sol

│ ├── SimpleTokenMock2.sol

│ ├── SimpleTokenMock3.sol

│ └── SimpleTokenMock4.sol

18

Nitro Project Security Review

├── modified_zeppelin

│ ├── GSN

│ │ └── Context.sol

│ ├── access

│ │ └── Ownable.sol

│ ├── cryptography

│ │ └── ECDSA.sol

│ ├── math

│ │ └── SafeMath.sol

│ ├── token

│ │ └── ERC20

│ │ ├── ERC20.sol

│ │ ├── IERC20.sol

│ │ ├── N2ERC20.sol

│ │ └── SafeERC20.sol

│ └── utils

│ ├── Address.sol

│ ├── Pausable.sol

│ └── ReentrancyGuard.sol

├── nitro.org

├── shared

│ └── NitroVerifiedStruct.sol

└── spawner

 └── Spawner.sol

12 directories, 35 files

19

